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Abstract 
 

The traditional way to cope with the increasing 
number of users in distributed information services is 
to use server replication, but additional and 
complementary strategies have been proposed in the 
last few years. In this paper, we evaluate those server 
selection strategies in which, by means of a packet 
burst sent from the client side, some QoS parameters 
such as delay, available bandwidth and packet loss 
can be estimated. In particular, our study is focused on 
the estimation of available bandwidth, proposing a 
two-step algorithm to measure it in the path to each 
server. Ethernet, ISDN and ADSL technologies have 
been used, and different scenarios and packet 
conditions have been tested in order to identify the 
limitations and design keys of bandwidth estimation 
methods. 
 
1. Introduction 
 

The increasing popularity of distributed 
information services in Internet causes continuous 
problems of scalability in those networks that support 
them. Actually, when the number of users of such 
services grows, the quality of service (QoS) decreases. 
The mentioned problems include: excessive load of 
certain servers caused by the great number of users 
that connect to them asking for a file or document, the 
bandwidth waste that entails sending the same 
document to several clients that share the same path to 
the server, or excessive delay in distributing a file 
when low-bandwidth connections have to be used.  

One of the most extended solutions to alleviate 
these problems consists on replicating the servers and 
distributing them geographically, so that the clients 
will be also distributed among the servers [1]. But this 
solution creates a new problem: how to decide what 
server a client has to connect to?  

The easiest solution is the so-called static server 
selection [2], in which clients are forced to connect to 

the same server based on fixed criteria. As it does not 
consider that some characteristics of the network, such 
as the available bandwidth for example, are variable, 
dynamic server selection [3] was thought as the 
possibility of not only selecting the server from which 
to get a file, but also having the possibility to connect 
to a different server if the quality of the connection 
with the current one degrades.  

At the time of developing a solution for the 
dynamic selection problem, different alternatives have 
been proposed [4,5,6] but we consider the client-side 
ones as the most interesting from the point of view of a 
final user. These kinds of solutions propose that the 
entity which demands the service (the client) has the 
responsibility to find out the optimal server. This is 
achieved by sending certain traffic to each possible 
candidate and waiting for the responses. Different 
kinds of traffic have been used for this purpose. In [7], 
the authors compare six different techniques and 
consider one based on tcping as the best one. Other 
studies [8] use HTTP HEAD control traffic and 
measure its request latency. The use of ping and the 
measure of the RTT (Round Trip Time) [9,10] is also 
well known. A good revision of the client-side 
methods and tools can be found in [11].  

In this article we try to identify the main limitations 
and design keys of client-side bandwidth estimators. 
To carry out our study, we have developed a two-step 
algorithm that could help client-side server selectors, 
by means of characterizing the path to each server in 
terms of available bandwidth, before taking a decision. 
Our method takes advantage of some existing 
solutions, specially those based on ICMP traffic, but 
includes some improvements such as the alternative of 
using UDP packets instead of traditional pings and a 
second step in the algorithm in order to estimate the 
available bandwidth. We will first compare the 
traditional solution based on pings with our UDP-
based and then, despite our method is able to estimate 
other QoS parameters, we will centre our study in 
available bandwidth estimation.  



The rest of the article is structured as follows. In 
section 2 we explain the algorithms that we have 
implemented and tested. A description of the scenarios 
used for the tests is included in section 3. In sections 4 
and 5, we show the results obtained in the tested 
scenarios and we extract conclusions in section 6. 
 
2. Methodology 
 

A server selection tool should be able to evaluate 
from which server information could be downloaded in 
less time. Therefore, the aim of the methods presented 
in this section is to characterize the path from the 
server to the client in which they are executed. For this 
purpose, two alternatives have been studied: 

- ICMP based: The traditional method for 
estimating link capacity is based on sending bursts of 
ICMP request (ping) packets to each server and 
waiting for the reception of their corresponding ICMP 
reply packets.  
 - UDP based: Due to the tendency of not allowing 
the incoming ICMP traffic at the servers for security 
reasons, we propose a second method based on 
sending bursts of UDP packets to a port that does not 
accept this type of traffic. Thus, the server generates 
port-unreachable ICMP packets towards the client that 
are used to make the corresponding estimations of the 
downlink properties.  

In both cases, we use the ICMP traffic received 
from the server to estimate the delay, the packet loss, 
the bandwidth of the bottleneck and the available 
bandwidth. A server selection methods should take a 
decision based on these four parameters after 
associating different weights to them. 

1) RTT can be estimated by calculating the average 
of the RTT for each packet sent in the burst. As this 
parameter is affected by both the uplink and downlink, 
it gives us information about the delay that the devices 
introduce in the path and the degree of server load. 

2) The estimation of the percentage of packet loss 
can be calculated as the percentage of lost packets in 
the burst. 

3) Given a path between a client and a server that 
includes several links L1,…,Ln with capacity B1,…,Bn, 
the bottleneck bandwidth, which is estimated in the 
first step of the algorithm presented below, could be 
defined as [12]: 

bottleneck bandwidth = min (B1, B2, … Bn )     (1) 
  
4) Given a link Li with capacity Bi and traffic load Ci, 
the available bandwidth in the link is defined as: 

 
available bandwidthi = Bi – Ci      (2) 

We present a two-step algorithm in order to obtain 
the available bandwidth. In the first step, we send the 
packets in the burst as close in time as possible, that is, 
with the minimum gap between them. In such 
conditions, other packets sharing the link are not likely 
to merge with the so closely ones in the burst. As 
explained in [13], when the burst crosses a link with 
less bandwidth, the packet spacing becomes higher 
(the packet rate becomes smaller). This increment in 
the packet spacing is preserved when the burst crosses 
higher speed links (Figure 1), allowing us to measure 
the bottleneck link capacity at the reception of the burst 
as the sum of the length of the packets received in 
response to the burst, divided into the time between the 
reception of the first and the last answer (3). The 
second step (Figure 2) consists on sending the packets 
in the burst at a rate equal to the nominal capacity just 
obtained. Now, a packet spacing increase will be due 
to other packets in the link merging with the burst. 
This increase allows us to estimate the available 
bandwidth in the bottleneck, by using the formula 
shown in (3) again. 
 
bottleneck bandwidth=((n-1)xpacket_size)/(tn-t1)      (3) 
 

An important factor to consider is the number of 
packets to include in the burst, as well as the size of 
these packets. The aim is to obtain a good estimation 
of the links but being as less intrusive for the network 
as possible. In effect, the greater the number of packets 
in the burst and the greater their size, the more 
intrusive the method. But having more packets in the 
burst implies more accurate estimations. Studies 
carried out by other authors [9] show that using five 
packets by burst allows reaching a trade-off between 
good bandwidth estimation and little bandwidth 
required for the estimation method. In section 4 we 
have assumed this value and we have carried out tests 
for different packet sizes, obtaining conclusions about 
the suitable size for the packets in the burst.  

 

 
Figure 1. First step: packet burst through a 

bottleneck link 



 
Figure 2. Packet burst sent in the second step 
 

3. Test scenarios 
 

In order to test the performance of our two-step 
algorithm, we study two scenarios. We have decided to 
test technologies commonly used to access Internet, 
such as ISDN (Integrated Services Digital Network) 
and ADSL (Asymmetric Digital Subscriber Line). 
 
3.1. Scenario 1 
 

As shown in Figure 3, this scenario is composed of 
three Linux-based computers. The client is responsible 
for sending the test burst towards the server, running 
the client-side algorithm. The server generates ICMP 
packets in response to the received burst, depending on 
the kind of traffic received: ICMP echo reply for pings 
or ICMP port unreachable for the UDP packets. We 
implement the bottleneck link as a 64kbps ISDN link 
between the router and the server. 

Some of the tests are carried out with competing 
traffic. This traffic is sent from the server to the router. 
The reason is two-fold: we are interested in the 
characterization of the critical link, the bottleneck, and 
we consider that the presence of competing traffic in 
the way from the server to the client is the most 
interesting case, as it emulates a server sending 
information to clients that share links. 

In this scenario, we have first studied how UDP 
and TCP traffic compete. Then, we have tested the 
influence of UDP and TCP competing traffic in our 
algorithm results. 

 

 
Figure 3. Scenario 1 

 
3.2. Scenario 2 
 

The interest of this scenario, shown in Figure 4, is 
two-fold. First, unlike the previous scenario, the path is 

asymmetric in terms of bandwidth. The ADSL 
connection used in this scenario offers 128kbps in the 
uplink (the way from the client to the server) and 
256kbps in the downlink (the way from the server to 
the client). This is a particular case where a problem 
affecting client-side estimators appears: they are 
unable to detect if the bottleneck is in the way from the 
client to the server or in the opposite way. Secondly, 
we discuss the influence of the packet size in 
bandwidth estimations in the case of transmitting over 
ATM (Asynchronous Transfer Mode), which is the 
ADSL underlying technology. 

 

 
Figure 4. Scenario 2 

 
4. Scenario 1: Results 
 

By understanding how UDP and TCP traffic 
compete, we could understand the influence of 
competing traffic in the traffic we inject in the network 
to take our measurements and vice-versa. In this 
section we centre our study on link capacity and 
available bandwidth estimation. 

 
4.1. How UDP and TCP traffic compete 
 

In order to run this test, the server starts to transmit 
UDP packets at different rates to the client, that try to 
compete with a ftp (TCP) transmission running from 
the server to the computer which is acting as a router. 
We evaluate the ISDN link by means of tcpdump. 

The bandwidth distribution in the case of sending 
240-Byte UDP packets is shown in Figure 5. As we 
can see, in absence of UDP traffic, the ftp transmission 
is obtaining all the capacity of the link. As we increase 
the UDP packet rate, this kind of traffic obtains more 
bandwidth. We have verified that, when UDP and TCP 
traffic compete, TCP obtains the bandwidth that UDP 
is not using. The reason is that TCP implements flow 
control but UDP does not. Thus, TCP is able to adapt 
its transmission rate to the variations detected in the 
available bandwidth. 

We have also tested the case in which two UDP 
transmissions compete or two TCP transmissions 
compete. The results reveal that the bandwidth sharing 
is proportional to the product (packet_size x 
packet_rate) obtaining 50% of the link capacity when 
their rates are the same.  



 
Figure 5. UDP competing with TCP traffic 

 
4.2. Results of the algorithm in absence of 
competing traffic 
 

In absence of other traffic, we have first compared 
the capacity of both our UDP-based method and the 
ICMP-based to estimate the bottleneck capacity (the 
ISDN link in this scenario), that is, we test the first 
step of our proposed two-step algorithm. We have 
studied the effect of varying the size of the packets that 
we send in the burst.  

The values shown in the graphs are obtained as the 
mean of the estimation of several bursts with the same 
characteristics. Each burst is composed of five packets 
with the same size. As explained in section 2, the client 
sends the burst to the server and waits for the reply to 
each packet in the burst. Then, it can calculate the 
capacity of the link. Depending on the algorithm used, 
the packets sent in the burst are ICMP or UDP. In both 
cases, we have tested the following packet sizes: 60 
Bytes, 120 Bytes, 240 Bytes and 296Bytes. As we are 
testing the first step of our algorithm, we send the 
packets with the minimum packet spacing (maximum 
packet rate).  

In Figure 6 we compare the bandwidth estimated by 
the algorithms after the first step with the bandwidth 
obtained by sending only UDP traffic at different 
packet rates. We have verified that, despite the packets 
are sent at a higher rate from the sender, our ISDN pc-
cards can process no more than 32 pps (packets per 
second), that is, the minimum packet spacing we can 
obtain is around 31ms in the ISDN interfaces. As 
shown in Figure 7, if we send 60-Byte packets, the 
maximum bandwidth occupied in the ISDN link is less 
than ¼ of the link capacity (64kbps). Thus, when we 
use 60-Byte packets in the test burst, we obtain an 
estimation around 16kbps. We can also see that the 
maximum precision could be obtained by using large 
packets with a size not higher than the MTU 
(Maximum Transmission Unit). The optimum value 
would be 250 Byte because the test burst occupies all 
the bandwidth during less time, being less intrusive. 

The MTU depends on the underlying technology and 
could be defined as the largest packet size that can be 
sent in a packet-based network without being 
segmented. The default MTU in ISDN connections is 
296 Bytes. 

As expected in absence of competing traffic, the 
second step of our algorithm estimates an available 
bandwidth similar to the link capacity. Results for our 
UDP algorithm are shown in Table 1. 

In summary, the results show that UDP-based and 
ICMP-based estimations are similar. Moreover, using 
250-Byte packets is the best choice because represents 
a trade-off between the accuracy of the estimation and 
the length of the packets in the burst. 

 
Table 1. Bottleneck capacity and available 

bandwidth estimations 
Packet size 60 Bytes 120 Bytes 240 Bytes 296 Bytes 
Bottleneck 

capacity (bps) 
15750.60 31446.39 54055.77 55301.61 

Available 
bandwidth(bps)

15340.94 29521.40 55458.70 57103.50 
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Figure 6. Bandwidth estimation using ICMP or UDP 
packets in the burst in absence of competing traffic 

vs. sending UDP traffic only 

Figure 7. Importance of packet size in bandwidth 
estimations 



4.3. Influence of competing traffic  
 

When we introduce traffic in the ISDN link, it has 
to compete with the burst we send. In this subsection, 
we take advantage of the results just obtained in order 
to centre in identifying other keys and problems. Thus, 
we use 250-Byte UDP packets in the test burst.  

We first run an ftp (TCP) transmission from the 
server to the computer that is acting as a router. This 
traffic uses all the capacity in the ISDN link from the 
server to the client. When the client is receiving the 
ICMP port-unreachable responses to the UDP packets 
of the test burst, we detect a decrease in the amount of 
bandwidth assigned to the ftp connection. The reason 
is that, as was extracted from Figure 5 in the case of 
UDP, ICMP does not implement flow control but TCP 
does. This implies that the ICMP port-unreachable 
packets in the burst are not affected by existing TCP 
traffic, but ICMP traffic affects TCP transmissions. 
Results in Table 2 are explained in Figure 8: in the first 
step of the algorithm, we send the test packets as close 
as possible, being difficult for the TCP packets to 
merge with the burst. In the second step, we send the 
test packets at the rate estimated in the first step. As 
the new packet rate is lower, some TCP packets can 
merge with the burst. T1 and T2 are the value of the 
expression (tn-t1) used in (3), for the first and the 
second step of the algorithm respectively. 

Table 2. Estimations in presence of TCP traffic 
Packet size 250 Bytes 

1st Step: Bottleneck capacity (bps) 60338.54 
2nd Step:Available bandwidth (bps) 40626.16 

 

 
Figure 8. IDSN bandwidth sharing in presence of 

TCP competing traffic 
 

Then, in presence of TCP competing traffic, we can 
estimate the bottleneck bandwidth but the available 
bandwidth estimation is not valid because, from the 
results in subsection 4.1, we know that the bandwidth 
available for a desired transmission depends on the 
kind of traffic. Therefore, if the traffic sent from the 
server to the client use UDP, it can use more than the 
estimated bandwidth (the competing TCP traffic will 
vary its transmission rate). On the other hand, if the 
desired traffic uses TCP, the bandwidth sharing will be 

proportional to the product (packet_size x packet_rate) 
of those TCP transmissions. 

If our burst has to compete with UDP traffic, which 
does not implement flow control either, our 
estimations become more affected as the UDP packet 
rate is increased. We must remember that in those 
situations the bandwidth sharing is proportional to the 
product (packet_size x packet_rate) and that our ISDN 
pc-cards cannot process more than 32 pps. 

 

Table 3. Estimations in presence of UDP traffic 
UDP 

competing 
packets  

60 Bytes 
10 pps 

(4800 bps) 

60 Bytes 
20 pps 

(9600 bps) 

250 Bytes 
10 pps 

(20000 bps) 

250 Bytes 
20 pps 

(40000 bps)
1st Step:  
Bc (bps) 

56047.33 44944.35 44832.36 35134.40 

2nd Step: 
Ab (bps) 

52875.63 38002.10 43645.65 25412.71 

 
Then, in presence of UDP competing traffic, we 

can obtain a good estimation for available bandwidth if 
the size of the competing traffic and burst packets are 
similar but in any case, an acceptable estimation is 
obtained. Anyway, the bottleneck bandwidth 
estimation is not valid because the traffic in our burst 
is also UDP and it is difficult to avoid packet mixing. 

 
5. Scenario 2: Results 
 

In this section we identify the main problems that a 
client-side estimator encounters if an asymmetric path 
or a technology that uses fix-size frames exist. 
 
5.1. The asymmetric path problem 
 

The detection of a bottleneck in the path is 
relatively easy, but knowing if it affects the traffic 
going to the server or coming from it is not. We 
consider this as a limitation of client-side methods 
when the path between client and server is asymmetric. 
This is the case of ADSL in which, due to 
communications between clients and servers are 
usually asymmetric (the server sends the information 
requested by the client, who usually only have to send 
back some control traffic to maintain the 
communication), the uplink offers less bandwidth than 
the downlink. In such situations client-side methods 
could detect the uplink as a bottleneck, in spite of the 
capacity of the downlink is higher, resulting in a 
wrong estimation of the available bandwidth.  

 
5.2. Influence of technology in the results 
 

In this scenario ATM is the underlying technology. 
As the transmitted frames have a fixed size of 53-Byte 



(The header is 5 Bytes long and the remaining 48 
Bytes can be filled with data), the size of the packets 
we generate in the test burst is important. If a frame is 
not completely filled with data, the bandwidth 
estimation will not be as good as desired. 

In Figure 9 we show the bandwidth estimations 
versus the size of the test packets. Depending on this 
size, one or more ATM cells are filled with data. 
 

 
Figure 9. Bandwidth estimation vs. Packet size 

 
6. Conclusions 
 

We have proposed a complementary solution for 
helping client-side server selection methods to estimate 
available bandwidth in the path to each server and we 
have identified the main keys and limitations of those 
client-side methods. 

The main limitations we have identified are: 
- Estimations depend on the size of the packets sent in 
the test burst. A good choice of the size for those 
packets depends on technology particularities. 
- Estimations depend on the type of competing traffic 
as long as on the size of its packets. 
- Client-side estimators are not reliable when tested in 
asymmetric-path connections. 

These limitations allow us to define the main keys 
in order to design a client-side bandwidth estimator: 
- It should adapt the type of the packets in the test burst 
to the type of both the competing traffic and the traffic 
the client wants to discharge from the server. 
- It should adapt the size of the packets in the test burst 
to the MTU of the bottleneck link. 
- The higher the number of packets included in the 
burst and the larger their size, the more accurate the 
estimation but the more intrusive the method. 

Further work is being done in order to develop a 
complete tool, capable of adapting the measurement 
method to the kind of traffic desired to download 
(UDP, TCP, HTTP) and able to dynamically switch 
from one server to a better one when the QoS of the 
communication decreases significantly. 
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